线性变换应用论文

线性变换应用论文

问:求一篇本科论文,线性变换的应用实例分析.跪求.
  1. 答:你们学校有没有购买中国知网的数据库啊?我想应该大部分大学都有这个数据库,如果有的话,你进去下载就行了,下载好了自己修改一下,很简单的。不过一般只有校园网能用数据库,你可以去图书馆或是学校机房里试试,祝你成功。
问:特征值与特征向量理论在几何变换中的应用 怎么写论文
  1. 答:矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。
    实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。
    注意:常有教科书说特征向量是在矩阵变换下不改变方向的向量,实际上当特征值小于零时,矩阵就会把特征向量完全反方向改变,当然特征向量还是特征向量。我赞同特征向量不改变方向的说法:特征向量永远不改变方向,改变的只是特征值(方向反转特征值为负值了)。
    特征向量是线性不变量
    所谓特征向量概念的亮点之一是不变量,这里叫线性不变量。因为我们常讲,线性变换啊线性变换,不就是把一根线(向量)变成另一根线(向量),线的变化的地方大多是方向和长度一块变。而一种名叫“特征向量”的向量特殊,在矩阵作用下不变方向只变长度。不变方向的特性就被称为线性不变量。
    如果有读者坚持认为负方向的特征向量就是改变了向量的方向的想法的话,你不妨这样看线性不变量:特征向量的不变性是他们变成了与其自身共线的向量,他们所在的直线在线性变换下保持不变;特征向量和他的变换后的向量们在同一根直线上,变换后的向量们或伸长或缩短,或反向伸长或反向缩短,甚至变成零向量(特征值为零时)
问:线性变换的意义
  1. 答:线性变换的意义:把线性映射写成具体而简明的2维数阵形式后,就成了一种矩阵。进而由线性映射的加法规则和复合规则来分别定义矩阵的加法规则和乘法规则是很自然的想法。
    当空间的基变化(坐标系变换)时,线性映射的矩阵也会有规律地变化。在特定的基上研究线性映射,就转化为对矩阵的研究。利用矩阵的乘法,可以把一些线性系统的方程表达得更紧凑(比如把线性方程组用矩阵表达和研究),也使几何意义更明显。
    矩阵可以分块计算,可以通过适当的变换以“解耦”(把复杂的变换分解为一些简单变换的组合)。要求出一个线性变换的秩,先写出其矩阵形式几乎是不可避免的一个步骤。
    遇到这样的加上了1个常量的非线性映射可以通过增加1个维度的方法,把变换映射写成2×2维的方形矩阵形式,从而在形式上把这一类特殊的非线性映射转化为线性映射。这个办法也适用于处理在高维线性变换上多加了一个常向量的情形。这在计算机图形学和刚体理论(及其相关机械制造和机器人学)中都有大量应用。
    扩展资料:
    两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。
    “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。
    参考资料来源:
  2. 答:线性就是函数关系为一次函数。线性变换就是说把A以某种准则(一次函数)变换到B,这种变换就是线性变换。比如一组数(1,2,3)以3x+1这种准则进行线性变换的结果就是(4,7,10)。相反,若是以x的平方变换等非一次函数关系的变换就不叫线性变换了。
  3. 答:在数学中,线性映射(也叫做线性变换或线性算子)是在两个向量空间之间的函数,它保持向量加法和标量乘法的运算。术语“线性变换”特别常用,尤其是对从向量空间到自身的线性映射(自同态)。在抽象代数中,线性映射是向量空间的同态,或在给定的域上
线性变换应用论文
下载Doc文档

猜你喜欢