机械工业废水的处理与回用

机械工业废水的处理与回用

一、机械工业废水的处理及回用(论文文献综述)

包宇航[1](2021)在《某燃煤电厂水网络优化及末端废水回用工艺可行性研究》文中研究说明在我国长期处于水资源短缺及燃煤发电为主体能源结构的背景下,加之正式实施排污许可制度后,电厂的外排废水及废水处理工作受到了严格监管。随着大批电厂开展节水改造,经过分类收集、梯级利用及浓缩后产生的末端废水难以回用。本文以某燃煤电厂为研究对象,通过分析该燃煤电厂各用水系统的特点,对全厂用水网络进行优化设计,对末端废水进行回用处理,从而实现电厂废水零排放。通过对电厂全厂用水网络调研,在水平衡试验基础上,制订全厂整体用水的改进措施,初步降低了取水量和废水排放量,并得到改进后的水平衡图。对电厂进行水网络深度优化,选用水夹点-数学规划法作为节水减排优化方法,得出考虑设置零排放工艺情况下的用水网络图,全厂取水量由235 m3/h降低至157 m3/h,废水排放量由40 m3/h降为0。为解决由于电厂水质、水量不稳定造成优化过程计算繁琐等问题,以Python为主体,编写计算目标电厂用水数据的算法程序,得到最小取水量及对应的质量负荷等数据,与手工计算相符。以目标电厂末端废水为研究对象,根据深度节水得出的末端废水水质和水量为依据,从主流末端废水处理流程的三个阶段:末端废水预处理单元、浓缩减量段及固化单元,分别选择并设计方案进行比选。废水预处理单元通过从工艺流程、主要处理单元设计、投资运行费用等方面对比,推荐采用运行成本更低的氢氧化钙-硫酸钠-碳酸钠软化工艺,投加药剂成本为20.15元/m3。末端废水浓缩减量及固化段方案选择分别从系统总投资、总运行费用及综合经济指标进行比较,低温烟气蒸发浓缩减量+旁路烟道蒸发干燥工艺为推荐方案,方案总投资为6300万元,总运行费用为84.63元/m3,同时省去预处理工艺,结晶盐被转移到粉煤灰中,具有技术经济优势。目标电厂推荐采用低温烟气蒸发浓缩减量+旁路烟道蒸发干燥工艺为末端废水处理方案,经过浓缩蒸发,产水回用,达到了零排放的目的。本文通过对目标电厂的数据分析和研究,从理论上论证了电厂水网络优化及末端废水回用工艺方案的可行性,并根据论证结果提出节水建议和末端废水处理工艺选择方案,也对其他电厂节水减排工作具有一定参考意义。

程峥[2](2020)在《汽车制造行业废水处理关键技术研究与实践》文中认为汽车制造行业是国家制造业中最为重要的组成部分,堪称衡量一国制造业水平的标杆。近30年来,我国的汽车生产量和销售量连续快速增长,至2009年已位居全世界首位。目的:在汽车的生产制造过程中,会产生多种类的生产性废水,含有酸碱、多种金属离子、总磷、石油类及油漆微粒等,其污染性质复杂,对环境危害性大。如何有效的处理汽车制造行业废水,降低其对环境的污染,是环境工程领域的一个紧迫课题。方法:本文对汽车制造行业的废水产生过程及特征进行分析,对国内外汽车制造行业废水处理的技术和方法进行归纳和探究,并以江西某汽车集团小蓝基地废水处理站的设计、施工和运营工作为研究现场,采用分质收集各股废水并进行物理及化学手段预处理,再混合进行生物处理的组合工艺,开展汽车行业废水的关键处理技术研究与实践。结果:采用物理、化学及生物法等多种废水处理技术,对汽车制造行业的废水进行处理后,并对处理后出水各污染物的平均浓度进行为期6个月的检测分析,其中总镍值为0.19±0.14mg/L、总锌值为0.31±0.22mg/L、p H值为7.06±0.25、CODCr值为60.89±23.20mg/L、NH3-N值为3.83±1.46mg/L、总磷值为3.15±2.05mg/L。结论:该处理思路和处理手段能去除和降解汽车制造行业废水中的大多数污染物质,总镍指标能满足《污水综合排放标准》(GB8978-1996)中的第一类污染物排放标准,CODCr、NH3-N、总锌等指标能满足一级排放标准,磷酸盐指标无法满足一级或二级排放标准,必须增加沉淀、过滤等深度处理工艺方能满足。本项目实践总体工艺选择合理,设备选型适当,处理效果良好,满足排放要求,可为其他汽车制造行业废水处理站设计、建造和运营提供参考。

陈博坤[3](2020)在《煤化工废水零液排放技术研究及高浓酚氨废水处理流程开发》文中提出面对国家能源安全和煤炭和水资源在地势上呈逆向分布的现状,中国既要大力发展煤化工产业,又要解决煤转化工业因巨大耗水量而带来的严峻挑战,煤化工废水的“零液排放”俨然成为亟待解决的关键问题之一。在工业设计上基本形成并认同了“污水预处理–生化处理–深度处理–盐水处理–固化零排放”的设计框架,但是对于部分煤化工废水,该流程仍存在预处理效率低、回用水水质差、处理成本高、水资源回用率低且处理系统缺乏顶层设计等问题,制约着我国煤转化工业的清洁利用和可持续性发展。为此,本文基于生命周期模型调研分析了典型的九类煤化工废水处理的生命周期成本,通过引入虚拟成本法对比分析了“零液排放”和综合废水一级排放的成本优势,并基于2018年现代煤化工项目规划和煤化工项目取用水水平对未来煤化工项目耗水水平进行了核算。结果表明,煤化工废水实现“零液排放”具有7.17元/t水的成本优势,已规划的煤化工项目总耗水水平将达到工业耗水量的2.8%,通过对经济成本、环境影响和各地区水资源总量的分析,本文总结归纳了一些改进措施,推动煤化工项目能源转化效率的提升和水资源的合理利用。碎煤加压气化技术虽然具有非常高的冷煤气效率,但实现废水“零液排放”困难,相比之下,水煤浆气化技术实现“零液排放”较为容易,但该技术用于生产清洁燃料或化工产品时,对碳元素的利用效率仍然较低。因此,本文耦合了两种气化技术的优点以期实现优势互补。结果显示,在控制各工艺流程能够实现全流程“零液排放”的基础上,提升煤制烯烃和煤制乙二醇流程碳元素转化效率提高24.95%和13.55%,降低烯烃和乙二醇的单位成本19.72%和9.27%,而且降低了CO2排放量83.1%和83.5%,具有很好的应用前景,而煤制天然气项目实现较低成本“零液排放”仍有待进一步探索。当前煤制兰炭废水预处理过程对油、尘和酚类等污染物脱除效率不足,而且消耗大量的高品位蒸汽。这不仅污堵各单元设备组件并大大降低过程的传质传热效率,而且蒸汽要求远高于兰炭厂的蒸汽副产能力。本文总结归纳了该流程的几点不足之处,针对性地提出了新型处理流程并通过工业废水的小试实验研究验证了其可靠性和可行性,并对产水量为240 m3/d的兰炭废水处理流程进行了工业设计。结果表明,新型流程通过改变废水体系中稳定存在的油滴表面ζ电位使其斥力减少而聚并沉降,油尘含量均降至20mg/L以下;分离脱酸塔和脱氨塔有效降低了塔底热负荷和蒸汽品位需求;而溶剂回收塔的负压操作不仅降低了再沸器蒸汽品位,而且减少了粗酚在高温条件下对塔釜的腐蚀。最终出水中油、酸性气、总酚、氨氮和COD浓度分别降至20 mg/L、10 mg/L、270mg/L、50 mg/L和3050 mg/L以下,节省固定投资成本约57.9%,吨水操作成本由53.40元降至50.69元。煤化工高浓含酚氨有机废水均需采用酚氨回收单元汽提脱除废水中的酸性气、氨氮并回收稀氨水,萃取脱除水中有机物并回收粗酚产品。华南理工大学酚氨回收工艺获得了工业界普遍的认可,该工艺采用单塔同时脱除酸性气和氨氮,MIBK萃取脱除酚类并精馏回收萃取剂和粗酚,但在此过程中消耗了大量的蒸汽。本文通过引入蒸汽再压缩式热泵精馏,借助夹点分析方法,在不改变现流程的操作参数的条件下,提出了两种能量集成方案,基于技术经济分析结果,发现新流程降低了53.7%热公用工程、57.5%冷公用工程、增加了662 k W电耗。新流程吨水处理成本由35.53元/t降至27.34元/t水,年节省公用工程费用655.2万元,减少CO2排放5237 t/y。

侯郊[4](2020)在《铅锌冶炼高盐废水零排放系统设计改造及应用研究》文中研究表明随着铅锌冶炼行业日益激烈的市场竞争,铅锌冶炼企业面临相关企业先进冶炼技术封锁和国家环保方面的高标准、严要求,但现有企业废水处理系统仍存在一定的问题,如氟离子、氯离子和钠离子因富集升高而导致管道系统腐蚀和结垢。因此,合理有效的建立高盐废水零排放系统已迫在眉睫。这项高盐废水零排放系统的建立,可有效促进公司生产和经营模式的更新升级,有利于提高公司的废水利用率,促进公司资源利用效率的提升,更进一步提升公司核心竞争力。本论文通过对某公司现有废水处理系统的实地考察和分析,发现该公司废水处理难度大,且地处环境敏感区,废水中的氟离子、氯离子、钠离子因富集升高给企业生产带来一系列的难题。在当前国家提倡的绿色冶金局势下,推动铅锌冶炼高盐废水零排放系统的建设对企业来说是很有必要的。该系统的设计主要集中在设计进、出水水质,设计处理能力,设计工艺流程和主要设备。本文在某公司废水处理系统的基础上,合理控制投资和运行成本,新增离子交换器及配套设施,新增电渗析装置及配套设施,新增蒸发结晶和盐硝分离系统,配套冷却水系统、钢结构厂房,新增设备安装土建基础、地坪硬化,新增项目配套的管路、电气和仪表控制系统,使铅锌冶炼高盐废水零排放系统与该公司早期的废水处理系统能够紧密配合,并且废水处理效果得到极大的提高。该系统实施后,可实现该公司废水处理系统中氟离子、氯离子、钠离子的有效开路,现有生产中水经过本系统蒸发结晶处理后,产水水质中氟的含量可以降到含氟<8mg/L,含氯<50 mg/L,钠含<100 mg/L,总硬度<50 mg/L,其余指标达到地表水三类标准。氟、氯、钠离子的浓度大幅降低,可有效延缓管道及设备腐蚀,大幅降低管道及设备维护、修理成本,由此可以看出铅锌冶炼高盐废水零排放系统确实解决了该铅锌冶炼公司废水难处理的难题并给公司带来了可观的收益。

焦东[5](2020)在《废纸制浆造纸厂废水处理新工艺及中试研究》文中提出造纸工业作为重要的基础原材料产业,具有可持续发展的特点,在国民经济中占据重要地位。基于制浆造纸行业的特殊性,在生产过程中会使用大量的水,即使经过水的循环使用及工艺改进,仍会产生大量的生产废水。造纸废水的特点是排放量大、污染负荷高、成分复杂,其主要污染指标为化学需氧量、生化需氧量、p H、总氮、总磷、氨氮和悬浮物等。为了避免造成严重的环境问题,需对废水处理后达标再排放或再回用以减轻环境压力。制浆造纸废水常规处置方法较多,一般分为化学处理法、物化处理法、生化处理法。目前已经广泛应用到造纸废水深度处理中的方法主要有:化学混凝法等物化法、厌氧/好氧等生物法、芬顿等高级氧化技术、人工湿地等生态处理法等。随着造纸单位水耗标准的推出及淡水资源的缺乏,研究开发基于中水回用的造纸废水处理新工艺具有重要的实际意义。对水处理过程不同工段废水中有机物采用溶剂萃取进行GC-MS分析检测,发现SBR好氧工艺、混凝工艺以及芬顿氧化工艺均可以大量降解造纸废水中的残留有机物,但由于各种方式的作用机理不同,各工艺降解的有机物种类也不尽相同。SBR好氧工艺和混凝工艺之间存在协同作用,在废纸制浆造纸废水处理工段中同时使用这两种工艺可以有效提高有机物的降解能力。芬顿氧化处理降解有机物的能力较强,但芬顿处理后的废水中仍可以检测到未被降解的有机物。研究开发的臭氧氧化新工艺相对芬顿氧化处理,可高效去除废水中有机物且显着降低出水色度,为化学氧化后废水的深度处理与回用提供更好的条件。为了进一步降低生物处理后的废水中难以生化降解的环境污染物质的含量,探究了多种絮凝剂对废水中杂质的絮凝作用。利用造纸厂芬顿污泥制备得到的聚合硫酸铁(PFS)为絮凝剂,聚丙烯酰胺(PAM)为助凝剂,通过絮凝法对废水进行处理,采用响应面法探究了絮凝过程中PFS用量、PAM/PFS体积比和处理温度对废水中化学需氧量(COD)去除率的影响。结果表明,絮凝法可以有效地降低造纸废水中的COD含量,响应面法优化得到的最佳工艺条件为:PFS用量为1.04 m L/L,PAM/PFS体积比为4.99,处理温度为31.54℃。在最优条件下进行验证实验,造纸废水中CODCr的去除率为39.6%,与模型预测值接近。应用响应面法建立的造纸废水COD脱除模型可以有效预测造纸废水中COD的脱除率。PFS用量和PAM/PFS体积比参数之间存在着协同作用,共同影响造纸废水COD的脱除率。针对造纸过程中废水难以达标排放的问题,采用单因素实验的方法探索了臭氧氧化法的深度处理效果。结果表明,以纳米氧化铜作臭氧氧化的催化剂,并且在臭氧发生量为3g/h,催化剂用量为0.25‰,反应过程中温度维持在30℃,反应时间维持在30min的情况下,COD去除率可达95.7%,出水满足GB 3544-2008《制浆造纸工业水污染物排放标准》。实验室自己制备的多孔材料负载Cu O催化剂的回用实验表明,催化剂在不经处理回用5次后,而COD去除率未受明显影响。整个工艺过程稳定性高并且经济环保,适于造纸废水的深度处理工程应用。为了进一步降低氧化废水中的各种离子及微量有机物等指标,实现中水部分回用,采用无机膜和反渗透膜(RO)组成的膜系统对氧化废水进行膜过滤研究。研究发现无机膜和RO膜组成的膜过滤系统对化学氧化处理的废水进行过滤可以有效地降低废水中的TDS、COD、色度、电导率、硫酸根离子以及铁离子浓度等指标,其中TDS、色度、硫酸根离子以及铁离子的去除效果显着,连续运行发现,这些指标降低95%以上。膜系统经过不同时间和次数对化学氧化后废水过滤后,仍然保持良好的过滤效果。相对于不同孔径的无机膜而言,化学氧化废水经过RO膜过滤后,废水中的TDS、色度、电导率、硫酸根离子以及铁离子均显着降低。

马逍天[6](2020)在《我国水足迹量化模型构建与应用研究》文中指出当前我国水资源短缺和水环境污染现象十分严重,严重威胁着人体健康和生态系统安全,因此亟需针对我国水环境面临的环境风险进行科学系统的量化、评估和管理。水足迹分析作为评价水资源消耗和污染情况的综合性指标,能够有效解决这一问题。但传统的水足迹分析方法仅仅评估了水资源消耗和污染的量,难以量化环境风险和应对复杂的工业系统。而生命周期评价的方法能够有效解决上述问题,实现全过程环境风险解析和关键污染节点的识别。因此,本文采用生命周期评价方法来进行水足迹的量化。当前生命周期水足迹评价模型大多针对水稀缺足迹展开,针对水污染足迹(如致癌性足迹、酸性化足迹和淡水生态毒性足迹等)的模型较少。部分学者直接采用生命周期评价模型开展水足迹量化,因未剔除与水介质无关的的摄入途径以及大气与土壤介质中残留污染物的环境影响导致过度评估。并且现存研究在进行清单构建时,通常没有考虑经由大气与土壤间接影响水质的污染物,从而导致水足迹量化结果过低。此外,水足迹评价模型构建和应用中所需的地理、水质、环境、人口、技术水平等基础数据具有显着的地域差异性,直接引用国外模型和数据库并不符合我国国情的需要。针对上述问题,本文构建了一个通用性的本土化全过程水足迹影响量化模型,从而实现了对人类活动所导致的水资源消耗和水环境污染的环境风险的量化,并有效描绘人类产业活动和自然生态系统各要素之间的相互关系从而锁定关键污染节点。本文同时分别以我国某造纸企业、煤炭发电行业和工业废水排放的水足迹为例,开展了微观、中观、宏观层次的应用示例研究,具体研究内容如下:首先,本文基于我国国情建立了包含清单构建方法、中间点影响类型选择与特征化参数计算以及人体健康与生态系统质量损伤评估的本土化全过程水足迹影响评价模型。该模型依据ISO 14046国际标准建立分析边界,通过多介质逸度模型模拟了三千余种能够对水环境产生影响物质在环境中的迁移转换从而剔除最终未进入到水介质的部分,同时仅考虑了与水环境有关的经口摄入途径。研究在此基础上建立清单与6个中间点环境影响类型之间的联系,实现了 35374个中间点特征化当量因子的计算,进而实现了人体健康和生态系统质量损伤的评估。其次,本文通过对某造纸企业水足迹的分析验证了所构建的模型在微观(企业)层次上应用的可行性,并明确了其水足迹影响的关键因子,提出了相应的削减方案。研究发现在秸秆浆印刷书写纸生产的生命周期中,致癌性和非致癌性足迹贡献了超过95%人体健康损伤,而生态系统质量损伤主要来自于淡水生态毒性和水体富营养化足迹,其余中间点类型的影响不足3%。要实现水足迹影响的削减,控制有机肥回收、木浆生产和化学品制备等阶段的水足迹影响最为有效。上述三个输入因子的影响减少5%时,印刷书写纸生产的水足迹在中间点和终点层次的削减程度在0.3%至3.4%之间。企业可采取使用无元素氯漂白并进行黑液回收处理生产工艺的木浆,使用水电等清洁能源或回收能源以实现水足迹影响的削减。此外,通过筛选合理的废水处理工艺(如超深层曝气和生物膜过滤技术)和实现废水循环利用来控制废水处理过程中的水足迹影响也可获得显着的环境效益,直接水资源消耗的削减则对于水稀缺足迹的控制具有十分重要的意义。在污染物减排方面,需重点针对总磷、总氮、COD、BOD5以及重金属(如铬、砷、汞等)等污染物的排放。再次,本文通过对我国煤炭发电行业水足迹的分析验证了所构建的模型在中观(行业)层次上应用的可行性,并分析了其时间序列波动的特征和原因,为我国煤炭发电行业的全过程水资源消耗和水环境污染的管控提供了相关参考性信息。我国煤炭发电行业的水足迹影响对人体健康损伤在2006-2015年间不断增加,于2013年达到峰值后开始下降,但截至2015年总体上仍上升了 47.3%。而由于二氧化硫、COD和总氮排放的削减,此期间生态系统质量损伤削减了 26.0%。2015年我国实现供电上网1 kWh煤电的水足迹影响对人体健康和生态系统质量的损伤分别在 1.2×10-8 至 2.3×10-8 DALY 和 4.0×10-4 至 7.5×10-4 PDF.m2.yr 之间。对于人体健康损伤,其主要来自于原煤开采和洗选、运输、固体废弃物处置、原油和化学品生产等间接过程排放的砷、铬重金属以及燃煤电厂发电阶段汞排放所导致的致癌性和致癌性影响。生态系统质量的损伤主要来自于上述间接过程的淡水生态毒性和水体富营养化足迹以及燃煤电厂二氧化硫排放导致的酸性化足迹。但作为水足迹影响关键物质的总磷和重金属排放的削减并不显着,因此国家在进行总量控制时,建议加入总磷和重金属排放指标,同时增加原煤入选率以降低汞等污染物和运输过程的水足迹影响。但这与坑口电厂及“西电东送”工程的建设均存在进一步加剧我国主要煤电生产基地水资源短缺的现状的问题,因此在煤炭发电行业发展过程中,应综合考虑区域水资源承载能力,严格限制煤电产业的规模,尤其在水资源严重短缺的区域,建议发展低耗水的清洁能源。此外,为进一步削减煤炭运输过程的水足迹影响,建议用铁路运输和船运的方式。此外,本文通过对我国工业废水水足迹的分析验证了所构建的模型在宏观(区域/国家)层次上应用的可行性,并分析了其时空演变规律,为我国工业废水排放的全过程控制和精准管理提供了理论依据和数据参考。在1992-2015年间,我国工业废水排放的水足迹整体呈现下降趋势,其中人体健康损伤下降了89.84%。但由于2000年以后氨氮列入统计且其为对生态系统质量损伤贡献最为突出的污染物,生态系统质量损伤呈现先大幅上升后下降的趋势,这说明对氨氮的控制是必要的和有效的。我国工业废水排放的水足迹影响与工业产值增长之间的关系总体上属于较为理想的状态,即在保持经济增长的同时,较为有效的抑制了工业废水排放对水环境的影响,但部分年份仍出现高于经济增速的水足迹影响,仍需加强治理和管理工作以防出现反弹。对于人体健康损伤,非致癌性影响高于致癌性影响,而对于生态系统质量损伤,水体富营养化和酸性化足迹的贡献较为显着。若要控制人体健康损伤,需重点控制有色金属矿采选业、化学原料和化学制品制造业和有色金属冶炼及延压加工业的砷排放以及金属制品业六价铬排放。而生态系统质量损伤的控制建议重点针对上述四个工业部门及农副食品加工业、造纸及纸制品业、纺织业、石油加工、炼焦和核燃料加工业、食品制造业和酒、饮料和精制茶制造业等工业部门COD和氨氮的排放。同时,在进行水环境管理时需考虑空间差异性以提升水足迹影响削减效率,如在东部的江苏、广东等废水排放量突出的地区需加强工业废水的循环利用,而在西北部等每吨废水排放的水足迹影响突出的地区则建议一步提升其工业行业清洁生产水平以实现污染物的减排。对于单位水足迹影响和废水排放均较为突出的湖北、湖南、河南、江西等省份需重点关注并同时采取上述举措,并推动产业结构的转型升级。综上所述,本文采用生命周期评价方法构建了一个具有广泛应用性的本土化全过程水足迹影响评价模型,并采用微观、中观、宏观多个层次上不同地理区域或时间尺度内的案例分析验证了该模型多维度应用的可行性与可靠性。在对模型进行修正的同时,为我国工业行业导致的水资源消耗和水环境污染的源头预防、全过程控制和高效治理提供理论、数据和决策支持。同时,还可以其他国家或行业开展生命周期水足迹评价提供理论支持和实践经验。本研究的创新点主要包括:(1)创建了符合ISO 14046国际标准的全过程水足迹影响评价模型,并综合考虑了污染物释放经由多介质对水环境的影响,同时剔除了与水环境无关的摄入途径;(2)在国际上首创了集水稀缺影响、水污染生态与健康风险量化为一体的且适用于我国国情的全过程水足迹量化模型;(3)实现了企业和行业层面的工业系统的水足迹应用分析。

韩琦[7](2020)在《基于平板陶瓷超滤膜的多工艺耦合深度处理电镀废水》文中研究说明电镀废水毒性大,对人类健康和生态环境构成极大的威胁,因此,电镀废水的治理备受关注。随着电镀废水污染物排放标准相应提高,常规处理工艺不能满足电镀废水排放标准,对电镀废水进行深度处理,保证达标排放或回用是十分必要的。为解决当前电镀废水生化出水有机物浓度超标,无法达标排放或回用等关键问题,本文以江苏省某电镀园区污水处理厂的生化出水为原水,重点研究了膜过滤、强化混凝、高级氧化和高效吸附等物化处理工艺对电镀废水生化出水中有机污染物的处理效能,进一步探究几种不同的组合工艺对有机污染物的处理效能,基于上述研究结果,开发出一种用于电镀废水深度处理的新型陶瓷膜耦合工艺。对电镀废水生化出水水质进行分析发现,生化出水中主要含有类腐殖酸、胺类、氨基酸类、醇类等有机污染物。在此基础上,分别考察陶瓷膜过滤、强化混凝、高级氧化和高效吸附对电镀废水生化出水的处理效能,试验结果表明:(1)陶瓷膜过滤对浊度的去除效果较好,出水浊度稳定低于0.5 NTU;(2)增大聚合硫酸铁(PFS)的投加量,能够强化混凝效果,在PFS浓度为80mg/L时,对TOC的去除效果达到30.46%;(3)臭氧投加量为50mg/L时,对TOC的去除率在46.5%左右,但是对荧光类物质去除率仅为15%,在pH=4,亚铁离子投加量1.5 mmol/L,过氧化氢投加量1.5 mmol/L时,Fenton氧化对TOC的去除率为45.68%;(4)活性炭、粉煤灰和沸石三种吸附剂中活性炭吸附对有机物的去除效果最好,当活性炭投加量为2.0 g/L以上时,TOC的去除效率达到80%左右。将Fenton氧化与活性炭吸附联用,对COD和TOC的去除率明显提高,COD的去除率最大达到85%,TOC的去除率最大达到85.25%,出水COD<15 mg/L,TOC<5 mg/L,而且经Fenton氧化后再吸附可以在较小的活性炭投加量条件下达到更好的去除效果。基于前期试验结果,构建了Fenton氧化-活性炭吸附-陶瓷膜过滤耦合工艺,对耦合工艺的运行参数进行了优化,当亚铁离子投加量为1.5 mmol/L,过氧化氢投加量为1.5 mmol/L,活性炭投加量为40 g/L,陶瓷膜临界通量为70 L/(m2·h),反应器总水力停留时间为2 h时,连续运行30 d的运行结果显示,陶瓷膜耦合工艺对COD和TOC的去除率都稳定在80%左右,对浊度的去除率高达96%以上,处理后出水COD和TOC的浓度分别小于15 mg/L和5 mg/L,出水浊度远远小于0.1 NTU。陶瓷膜耦合工艺可以稳定运行,且处理后出水能达到设计出水水质。针对膜污染问题,实验研究发现:污染后的膜经过物理清洗后,膜清水通量恢复率可达到85%左右;进一步采用盐酸/(次氯酸钠+表面活性剂)分步强化化学清洗,膜清水通量恢复率高达105%,污染陶瓷膜清水通量超出原膜清水通量,这很可能是在药剂作用下陶瓷膜界面及孔道壁受到亲水改性。综上所述,新型Fenton氧化-活性炭吸附-陶瓷膜过滤耦合工艺中,Fenton氧化和活性炭吸附能够有效去除电镀废水中有机污染物,同时可以减缓膜污染,延长膜运行周期;陶瓷膜可以进一步保障出水浊度达标。

李静[8](2020)在《化工厂雨排废水处理及回用研究》文中提出随着我国经济的高速发展,水资源短缺问题正日益成为制约我国经济发展的重要因素,化工厂废水排放量大、污染物种类多,对化工厂外排污水进行处理及回用是节水降耗的重要手段。本课题以兰州石化公司化肥厂雨排改造项目为研究对象,探索其新建的废水处理设施所使用的处理原理、工艺流程及设计指标,并对其运行数据进行统计分析,探索其对COD、氨氮、悬浮物等污染物的处理效果。兰州石化公司化肥厂700m3/h雨排废水预处理装置,主要由格栅井、调节池、高效澄清池、臭氧强氧化池、曝气生物滤池、V型滤池、清水池、污泥处理系统和臭氧制备系统等九个单元组成。该装置主要采用混凝、絮凝、沉淀、物理过滤法去除悬浮物、胶体有机物,采用化学氧化法和生化降解法等降解水中的COD、氨氮等杂质。700m3/h雨排废水预处理装置对化肥厂雨排废水各类污染物处理效果良好,COD、氨氮、悬浮物等污染物经处理后均能达到外排标准。装置各类药剂及电耗、能耗均能达到设计指标。装置的运行数据能为公司其他厂区雨排系统改造提供实践经验,为公司新建废水处理装置提供有价值的参考数据。

刘世念[9](2020)在《臭氧牡蛎壳生物固定床-MBR处理城镇污水厂尾水用于火电厂及优化用水的研究》文中研究指明火电厂既是工业用水大户,也是废水排放大户。自2015年起,国家环保政策法规要求具备使用再生水条件但未充分利用的火电项目,不得批准其新增取水许可。火电厂与所在地区分抢淡水资源,以水限电、以水定电日益严重。水资源紧张已凸显为我国火电发展的瓶颈。在此背景下,火电企业迫切需要通过开发城镇污水厂尾水深度处理技术以开辟水源,并通过优化厂内用水以节约用水,形成经济实用的火电厂工业用水技术体系,系统解决火电厂面临的用水难题。臭氧氧化反应可快速破坏大分子有机污染物的结构,将难降解有机物转变为可生化性小分子物质,而臭氧氧化生成的新鲜氧则有利于后续的好氧生物处理。生物固定床具有高效、稳定、操作简便、易实现连续运行及自控等优点,针对寡营养的城镇污水厂尾水,采用微生物友好的牡蛎壳填料生物固定床可最大限度维持生物反应的微生物量,确保生物处理的稳定运行。膜生物反应器(MBR)对胶体悬浮物(SS)、有机质等具有良好的截留作用。据此,本论文提出了臭氧-牡蛎壳生物固定床–MBR(Ozone-oyster shell biological fixed bed reactor-MBR,简称OOFBR-MBR)城镇污水厂尾水深度处理工艺,尾水经该工艺处理后用作火电厂工业用水原水;从运筹学角度,提出了火电厂优化用水策略,编制了基于回用水质标准、水平衡模型与分质用水的火电厂优化用水技术方案。开展了工艺及工艺机理、应用方案等研究,得到主要研究结果如下:采用OOFBR-MBR工艺深度处理城镇污水处理厂一级B标准的尾水,主要影响因素为臭氧投加量和水力停留时间(HRT)。随臭氧投加量的增加,OOFBR和OOFBR-MBR的COD和TP去除率均呈先增加后减小的趋势,COD最大去除率分别为66%和83%,TP最大去除率分别为58%和65%;NH4--N去除率不断增加。随进水流量增加,OOFBR和OOFBR-MBR的COD和TP呈先增加后减少的趋势,COD最大去除率分别为45%和73%,TP最大去除率分别为27%和43%;OOFBR的NH4--N去除率迅速下降,而MBR的NH4--N去除率仍保持很高,平均去除率达92%。OOFBR-MBR适宜的工艺参数为,臭氧投加量40~70mg/L;进水流量3~6L/h(HRT 25~50h、容积负荷0.0096~0.019 kg COD/(m3·d)),最大冲击负荷为0.0192kg COD/(m3d)。对达到《城镇污水处理厂污染物排放标准》一级B标准的尾水,在臭氧投加量70 mg/L、HRT 25h(进水流量6 L/h)的条件下,OOFBR工艺段对COD、NH4--N、TP和浊度去除率分别可达66%、90%、45%和68%;MBR工艺段对COD、NH4--N、TP和浊度去除率分别可达41%、87%、15%和91%;OOFBR-MBR联合工艺对COD、NH4--N、TP和浊度去除率分别可达81%、99%、65%和97%。尾水经过OOFBR-MBR处理后,出水p H为7.47~7.85,浊度<0.2 NTU,COD<9mg/L、NH4--N和TP均<0.3 mg/L,优于火电厂锅炉补给水系统的RO装置进水水质要求。气相色谱-质谱联用(GC-MS)水质分析以及氮平衡计算结果表明,OOFBR-MBR系统对于城镇污水厂尾水中碳氮磷具有很高的转化效率。OOFBR中先是臭氧氧化难降解有机物为可生化性小分子有机物后,被牡蛎壳上的生物膜降解掉,MBR除了有效截留残留的有机物和胶体悬浮物(SS)外,还能进一步去除残留的NH4--N和COD。约90%的NH4--N在OOFBR中被好氧氨氧化菌和亚硝化细菌转化为亚硝酸盐氮,再进一步氧化为硝酸盐氮,产生硝酸盐氮在OOFBR-MBR反硝化作用下部分(约15%)转化为氮气。TP通过聚磷菌(PAOs)好氧吸磷形成富集污泥,并随着污泥的排出实现TP的去除。采用16Sr RNA基因高通量测序分析了OOFBR-MBR内微生物群落结构特征。投加臭氧前后,OOFBR和MBR反应器污泥中菌群丰度发生显着变化,OOFBR菌群保留了原污泥中29.2%的OTU(Operation taxonomy units,简称OTU),总OTU数目相对减少了28.5%,MBR中则保留31.3%的OTU,总OTU数目变化不大,臭氧对OOFBR-MBR中的微生物有明显的选择作用。OOFBR内异常球菌-栖热菌(Deinococcus-Thermus)以及浮霉状菌(Planctomyctes)细菌显着增加,有9种高丰度菌或对去除有机物污染物贡献较大,而MBR内厚壁菌(Phylum Firmicutes)、放线菌(Actinobacteria)以及浮霉状菌(Planctomyctes)细菌显着增加。OOFBR-MBR内的主要好氧氨氧化菌为亚硝化螺菌(Nitrosospira),亚硝酸盐氧化菌主要为硝化弧菌(Nitrospira)、硝化细菌属(Nitrobacter),反硝化菌则主要包括根瘤菌(Bradyrhizobium)、生丝微菌(Hyphomicrobium)等菌属。针对水中残留难降解有机物、NH4--N和TP等污染物,OOFBR-MBR的优化调控策略为,在适宜的范围内,当进水COD、NH4--N和TP升高时,宜增加臭氧投加量,提高难降解有机物的转化率及溶解氧;延长HRT以延长微生物的接触时间,有利于臭氧抗性微生物的积累和生物降解,从而提高COD、NH4--N和TP去除率;当进水COD、NH4--N和TP降低时,宜相应减少臭氧投加量和缩短HRT,保证各污染物指标在OOFBR-MBR各反应器中的高效去除。针对水资源短缺的现状以及火电厂耗水量大的特点,推荐了OOFBR-MBR城镇污水厂尾水深度处理工艺;针对火电厂用水流程复杂、水质要求差别大的特点,通过分析火电厂水量分配、消耗及排放之间的平衡关系,建立了优化的水平衡模型;从运筹学角度,制定了一种多水源及多用户之间配水优化方案,提出了火电厂一水多用、梯级使用、循环利用的用水系统运维策略,以及用、排水系统节水,分类处理分质回用含盐废水等优化用水技术措施。以湛江某2×600MW电厂为例,达标城镇污水厂尾水经OOFBR-MBR系统深度处理后,完全满足火电厂工业用水水质要求。采用优化用水技术方案后,全厂总取水量可从6849m3/d下降至3560m3/d,平均单位发电量取水量可从0.297m3/(MW·h)降低至0.143 m3/(MW·h),末端废水外排水量为512 m3/d。工程投资为7672.61万元,项目年化收益为1187.5万元,投资回收期为6.46a。

章静[10](2020)在《基于污泥陶粒的曝气生物滤池处理喷水织造废水的应用研究》文中指出喷水织机是纺织行业重要的织造机械,其在生产过程中消耗水资源且产生大量废水,由此引发系列问题。一方面大规模的喷水织造废水急需处理回用,另一方面水处理过程中产生的大量污泥也急需处置。针对日益严苛的环保政策要求,治理纺织行业喷水织造废水、开展资源化污泥处置迫在眉睫。曝气生物滤池(Biological aerated filter,BAF)将传统生物膜法与过滤技术相结合,因其生物持留量高、出水水质好而被广泛应用于各类废水治理。当前,遵循污泥处置“四化”原则的制陶技术成为研究热点,因其可应用于水处理领域并实现“以废治废”的双重收益而备受关注。为此,积极探索污泥制陶技术与曝气生物滤池强化废水处理的联合应用,对实现喷水织机行业的可持续发展具有重要意义。本文围绕长兴地区纺织工业喷水织机行业污染减排问题,结合污泥制陶资源化技术和废水生物强化两方面内容,基于污泥陶粒构建曝气生物滤池,对比市售陶粒,开展自制滤料生物滤池对喷水织造废水污染物削减研究,并从污染物去除特性、微生物特性、滤料水处理特性三个层面,探究作用机理。主要成果如下:1、喷水织机中水回用站现状调研。长兴县夹浦镇已建的8座喷水织造废水处理站核心工艺均为气浮-沉淀,产生污泥均在脱水后运送至水泥厂。典型喷水织机中水站Ⅰ出水中COD和油类平均浓度分别为522.95 mg·L-1和9.09 mg·L-1,均无法达到《污水综合排放标准》(GB8978-1996)的一级标准,需重点控制;中水站Ⅰ污泥年产量约7000 t(含水率约80%),p H为6.67~6.91,主要成分包括Si O2、Al2O3等,其中金属元素含量未超过《城镇污水处理厂污泥泥质》(GB/T24188-2009)中限值,危害性较小,可进一步探索污泥资源化综合处置技术。2、污泥基陶粒的研发及性能测试分析。确定以污泥、底泥、粉煤灰配比5:3:2、烧制温度1130℃、保温时间20 min制备污泥陶粒,其破损率、含泥量、盐酸可溶率、空隙率与比表面积分别为4.97%、0.73%、1.56%、45.65%、1.7215 m2·g-1,符合《水处理用人工陶粒滤料》(CJ/T 299-2008)中规定的限值。污泥陶粒组成成分与市售陶粒相近,以C、O、Si、Al为主要元素,包含石英、钙长石等氧化物。污泥陶粒粗糙多孔,内部孔隙率和孔容分别为36.5%、0.2432 cm3·g-1,适于微生物的吸附与固定。污泥陶粒浸出液中的金属含量均未超过《危险废物鉴别标准浸出毒性鉴别》(GB5085.3-2007),是一种环保的资源化水处理滤料。3、污泥陶粒BAF系统处理喷水织造废水的性能研究。分别构建基于污泥陶粒的曝气生物滤池(SSC-BAF)和基于市售陶粒的曝气生物滤池(CTC-BAF)。启动阶段,SSC-BAF在7 d后完成挂膜、59 d后完成微生物驯化,相对于CTC-BAF的12 d及65 d,SSC-BAF启动周期更短、更耐冲击。综合考虑回用标准,确定系统最佳气水比为5:1,HRT为6 h,此时SSC-BAF对COD、油类、浊度的去除率分别为86.7%、89.6%、97.7%,略优于CTC-BAF的去除率85.3%、87.0%、96.1%。SSC-BAF对COD的去除能力在反洗6 h后得以恢复,反洗周期为8~9 d,而CTC-BAF的反洗周期为6~7 d。相同工况下,污泥陶粒SSC-BAF整体性能优于商业市售陶粒CTC-BAF,证明以污泥等固废为原料制备的陶粒具有水处理应用价值,可实现“以废治废”。4、污泥陶粒BAF系统处理喷水织造废水的机理探究。喷水织造废水中含有大量苯系物、蛋白多糖类、酰胺类、酚类、酯类等,污染物去除特性显示SSC-BAF系统能高效降解废水中酚类、酯类、芳香族蛋白质,且降解织造废水的优势菌主要有Novosphingobium spp.、Sphingobium spp.、Piscinibacter spp.、Halomonas spp.等菌属。此外,SSC-BAF生物量及群落多样性远高于CTC-BAF,污泥滤料更好地富集了Novosphingobium spp.、Sphingobium spp.、Haliangium spp.等功能菌属,佐证了SSC-BAF水处理效能更优。自制污泥陶粒更大的持水倍率、更低的Zeta电位绝对值、更适宜的p H值,促进了微生物在其中的附着,使系统实现快速启动及污染物的高效降解。5、工程应用。建设污泥资源化处置工程,设计日处理量为200 t(含水率约80%),主体工艺为污泥预热、板框压滤、干燥制陶等,采用污泥制陶技术的吨陶粒总成本为257.2元;喷水织造废水污染减排工程因地制宜设计10000 m3·d-1的曝气生物滤池,并采用污泥陶粒作为滤料,综合实现喷水织机行业的污染减排。

二、机械工业废水的处理及回用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、机械工业废水的处理及回用(论文提纲范文)

(1)某燃煤电厂水网络优化及末端废水回用工艺可行性研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 课题背景及研究意义
        1.1.1 课题研究背景
        1.1.2 课题研究意义
    1.2 燃煤电厂节水减排研究及应用现状
        1.2.1 电力企业水平衡现状
        1.2.2 水系统集成技术现状
        1.2.3 燃煤电厂末端废水处理技术发展情况
        1.2.4 燃煤电厂节水减排现状简析
    1.3 研究主要内容及技术路线
        1.3.1 研究内容
        1.3.2 研究技术路线
第2章 目标电厂水平衡优化
    2.1 电厂基本概况
        2.1.1 供水系统
        2.1.2 排水系统
    2.2 水平衡试验内容
    2.3 水平衡试验结果分析
        2.3.1 主要监测点结果
        2.3.2 全厂用水情况分析
    2.4 主要分系统用水概况分析
        2.4.1 供水系统
        2.4.2 公用水系统
        2.4.3 工业循环冷却水系统
        2.4.4 除盐水制备及使用系统
        2.4.5 脱硫系统
        2.4.6 生活-绿化-消防系统
        2.4.7 废水处理及回用系统
    2.5 优化用水流程
        2.5.1 不合理用水改进措施
        2.5.2 水平衡优化分析
    2.6 本章小结
第3章 水网络深度优化
    3.1 现有水网络优化分析
    3.2 水系统集成计算分析
        3.2.1 用水过程极限数据修正
        3.2.2 水夹点-数学规划法优化
    3.3 水网络深度优化设计
    3.4 效益分析
    3.5 本章小结
第4章 电厂水网络优化算法的模拟
    4.1 Pandas数据读写
    4.2 程序运行及计算过程
    4.3 数据计算结果与分析
    4.4 本章小结
第5章 末端废水回用工艺方案
    5.1 末端废水水质及水量分析
    5.2 末端废水预处理方案
        5.2.1 石灰-碳酸钠软化工艺
        5.2.2 氢氧化钠-碳酸钠软化工艺
        5.2.3 氢氧化钙-硫酸钠-碳酸钠软化工艺
        5.2.4 预处理方案比选
    5.3 末端废水浓缩减量+固化段方案
        5.3.1 末端废水浓缩减量+固化段方案选择
        5.3.2 方案总投资比较
        5.3.3 方案运行费用比较
        5.3.4 方案综合技术经济指标比较
    5.4 末端废水回用方案整体比选分析
    5.5 本章小结
结论
参考文献
附录
攻读硕士学位期间发表的学术论文
致谢

(2)汽车制造行业废水处理关键技术研究与实践(论文提纲范文)

摘要
abstract
第1章 引言
    1.1 概述
    1.2 汽车制造行业废水概况
        1.2.1 汽车制造工艺介绍
        1.2.2 汽车制造行业废水产生环节
        1.2.3 汽车制造行业废水特征
    1.3 研究目的与意义
    1.4 实践方法与内容
第2章 汽车制造行业废水处理研究动态
    2.1 废水处理的基本原则
    2.2 废水的分类与收集
    2.3 废水的物化法处理技术
    2.4 废水的生物法处理技术
    2.5 废水的深度处理与回用关键技术
第3章 废水处理关键技术实践
    3.1 项目基本概况
        3.1.1 废水水量和水质
        3.1.2 废水的分类收集和设计处理能力
        3.1.3 治理要求
    3.2 项目的处理工艺设计
        3.2.1 总体设计思路
        3.2.2 工艺流程设计
        3.2.3 工艺流程说明
        3.2.4 主要工艺单元设计参数
        3.2.5 废水处理站高程图
        3.2.6 废水处理站平面布置图及剖面图
    3.3 项目的施工与安装
        3.3.1 地下和地上钢砼结构水池施工
        3.3.2 框架结构设备房和钢结构危险废物储存间施工
        3.3.3 水池防腐施工
        3.3.4 工艺管道安装
        3.3.5 环保机电设备和非标设备安装
    3.4 项目的调试与试运行实践
        3.4.1 单机与系统联动调试
        3.4.2 生化系统调试
        3.4.3 试运行
    3.5 项目的正式运营实践
        3.5.1 磷化废水处理系统
        3.5.2 脱脂、电泳和喷漆废水处理系统
        3.5.3 生化处理系统
第4章 实践过程中遇到的问题及改进措施
    4.1 实际进水情况与设计值差异
    4.2 沉淀池池型选择
    4.3 磷化废水序批式和连续式处理的优劣
    4.4 生化处理工艺选择
第5章 结论与展望
    5.1 结论
    5.2 展望
致谢
参考文献

(3)煤化工废水零液排放技术研究及高浓酚氨废水处理流程开发(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 煤化工产业发展及其废水“零液排放”现状
        1.1.1 以固定床气化为核心的产业发展与研究现状
        1.1.2 以流化床气化为核心的产业发展与研究现状
        1.1.3 以气流床气化为核心的产业发展与研究现状
        1.1.4 煤焦化/半焦的产业发展与研究现状
    1.2 煤化工废水“零液排放”的意义和难点
    1.3 煤化工废水处理技术研究进展和工程实践
        1.3.1 污水预处理
        1.3.2 生化处理
        1.3.3 深度处理
        1.3.4 膜浓缩及蒸发结晶
    1.4 拟解决的关键问题
    1.5 本文的研究内容及目标
第二章 煤化工废水处理的生命周期评价
    2.1 煤炭和水资源利用现状
    2.2 典型煤化工废水处理现状
        2.2.1 煤炭开采伴生水
        2.2.2 煤炭洗选废水
        2.2.3 煤气化废水
        2.2.4 煤液化废水
        2.2.5 煤焦化/半焦废水
    2.3 环境影响和经济性能分析
        2.3.1 直排生化出水对环境的影响
        2.3.2 废水处理系统生命周期成本分析
    2.4 煤化工工业政策意涵和建议
        2.4.1 煤化工项目未来的发展趋势
        2.4.2 政策意涵及建议
    2.5 本章小结
第三章 煤化工废水“零液排放”概念设计
    3.1 流程建模与分析
        3.1.1 碎煤加压气化制天然气流程
        3.1.2 水煤浆气化制烯烃/乙二醇
    3.2 碎煤加压气化耦合水煤浆气化制产品工艺
    3.3 技术经济分析
        3.3.1 碳元素氢化效率
        3.3.2 碳元素转化效率
        3.3.3 水耗分析
        3.3.4 经济性能分析
    3.4 本章小结
第四章 高浓含酚氨兰炭废水处理流程开发
    4.1 现存流程处理兰炭废水的瓶颈
    4.2 新流程开发研究方法
        4.2.1 酸化除油除尘
        4.2.2 萃取操作条件优化
        4.2.3 公用工程调整
    4.3 新流程性能分析
        4.3.1 现存工业兰炭废水处理效果
        4.3.2 酸化对油尘脱除影响
        4.3.3 萃取条件分析
    4.4 新流程关键单元可行性分析
        4.4.1 酸水汽提塔
        4.4.2 溶剂回收塔
    4.5 流程初步设计及经济性能分析
        4.5.1 过程集成及设计
        4.5.2 经济性能分析
    4.6 本章小结
第五章 酚氨废水处理流程能量集成
    5.1 酚氨回收工艺运行现状
    5.2 能量集成潜力分析
        5.2.1 工艺物流节能分析
        5.2.2 精馏塔或汽提塔热力学分析
        5.2.3 能量集成可行性分析
    5.3 能量集成方案
        5.3.1 关键技术节点分析
        5.3.2 污水汽提塔优先方案
        5.3.3 溶剂汽提塔优先方案
    5.4 能量集成经济和环境性能分析
    5.5 本章小结
结论与展望
参考文献
攻读博士学位期间取得的研究成果
致谢
附件

(4)铅锌冶炼高盐废水零排放系统设计改造及应用研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景和意义
        1.1.1 研究背景
        1.1.2 研究目的及意义
    1.2 国内外研究现状
        1.2.1 国内研究现状
        1.2.2 国外研究现状
    1.3 文献综述
    1.4 铅锌冶炼高盐废水零排放系统的可行性分析
        1.4.1 铅锌冶炼高盐废水零排放系统的技术基础
        1.4.2 离子交换技术
        1.4.3 气体软化剂软化高硬度水
        1.4.4 电渗析技术
        1.4.5 蒸发工艺
        1.4.6 关键外部条件保障
    1.5 本文主要研究内容
第二章 理论分析
    2.1 废水处理反应过程动力学
    2.2 二氧化碳降硬机理分析
    2.3 沉降池设计理论分析
    2.4 多效蒸发理论基础
    2.5 三效蒸发系统的工艺机理
    2.6 本章小结
第三章 铅锌冶炼高盐废水零排放系统方案设计
    3.1 铅锌冶炼高盐废水零排放系统方案设计概述
    3.2 铅锌冶炼高盐废水零排放系统的技术方案设计
        3.2.1 设计进、出水水质
        3.2.2 设计处理能力
        3.2.3 钠离子平衡计算
        3.2.4 重金属、砷、氟离子物料平衡
        3.2.5 高盐废水降硬设计
        3.2.6 工艺流程
        3.2.7 主要设备
    3.3 铅锌冶炼高盐废水零排放系统投资估算及风险分析
        3.3.1 铅锌冶炼高盐废水零排放系统的投资估算
        3.3.2 运行成本
        3.3.3 铅锌冶炼高盐废水零排放系统的风险分析
    3.4 本章小结
第四章 铅锌冶炼高盐废水零排放系统的实施和预期效果
    4.1 铅锌冶炼高盐废水零排放系统的实施难点及解决措施
        4.1.1 系统的实施难点
        4.1.2 解决措施
    4.2 铅锌冶炼高盐废水零排放系统的预期效果
        4.2.1 降低锌湿法系统氯离子效果分析
        4.2.2 降低锌湿法系统氟离子效果分析
        4.2.3 降低锌湿法系统钠离子效果分析
        4.2.4 系统应用后对管道和设备的腐蚀情况分析
    4.3 本章小结
第五章 总结与展望
    5.1 总结
    5.2 展望
致谢
参考文献

(5)废纸制浆造纸厂废水处理新工艺及中试研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 制浆造纸工业的概况
        1.1.1 制浆造纸过程及产生的废水
        1.1.1.1 备料废水
        1.1.1.2 制浆废水
        1.1.1.3 中段废水
        1.1.1.4 造纸白水
        1.1.1.5 污冷凝水
        1.1.1.6 末端废水
        1.1.2 脱墨浆造纸过程的简介及产生废水情况
        1.1.2.1 废纸的离解及浆料净化与浓缩
        1.1.2.2 废纸脱墨
        1.1.2.3 废纸回用废水
    1.2 制浆造纸废水处理技术
        1.2.1 化学处理法
        1.2.2 物化处理法
        1.2.2.1 混凝沉淀处理
        1.2.2.2 混凝气浮法
        1.2.3 生化处理法
        1.2.3.1 好氧生物处理法
        1.2.3.2 厌氧生物处理法
        1.2.3.3 生物酶催化技术
        1.2.3.4 厌氧好氧组合技术
    1.3 制浆造纸废水的深度处理技术
        1.3.1 混凝法深度处理
        1.3.2 吸附法
        1.3.3 膜分离技术
        1.3.3.1 概述
        1.3.3.2 基本原理
        1.3.3.3 应用
        1.3.4 高级氧化法
        1.3.4.1 光催化氧化法
        1.3.4.2 催化湿式氧化法
        1.3.4.3 声化学氧化
        1.3.4.4 臭氧氧化法
        1.3.4.5 芬顿氧化法
        1.3.4.6 超临界水氧化法
        1.3.4.7 电化学氧化法
        1.3.4.8 过硫酸盐氧化法
        1.3.5 联合工艺处理(综合处理方法)
        1.3.6 生态处理法
        1.3.7 生物酶法
        1.3.8 组合技术法
    1.4 造纸终端水回用技术及其背景和意义
        1.4.1 概述
        1.4.2 中水回用技术
        1.4.3 中水回用的意义及其发展前景
    1.5 本论文研究开发工作的提出及其意义
第二章 废纸制浆造纸主要处理工段水样中有机物特性分析
    2.1 实验部分
        2.1.1 实验原料及来源
        2.1.2 实验试剂及设备
    2.2 实验方法
        2.2.1 实验原料前处理方法
        2.2.2 紫外-可见分光光度计法
        2.2.3 气相色谱-质谱分析方法
        2.2.4 废水CODCr的测定
    2.3 结果与讨论
        2.3.1 厌氧出水中有机物的GC-MS分析
        2.3.2 厌氧出水再经化学混凝处理后水中有机物的GC-MS分析
        2.3.3 SBR好氧处理出水中有机物的GC-MS分析
        2.3.4 芬顿氧化排水的GC-MS分析
    2.4 本章总结
第三章 二级生化处理出水化学絮凝处理
    3.1 实验部分
        3.1.1 造纸废水来源
        3.1.2 实验试剂与仪器
    3.2 实验方法
        3.2.1 水质的基本性质测定
        3.2.1.1 PH值的测定
        3.2.1.2 污泥元素分析
        3.2.1.3 水质化学需氧量(COD)
        3.2.1.4 废水中半挥发性有机物的检测与分析
        3.2.2 PFS的制备
        3.2.3 絮凝实验
        3.2.4 响应面实验
    3.3 结果与讨论
        3.3.1 厌氧出水与芬顿氧化入水的GC-MS分析
        3.3.2 芬顿氧化入水絮凝最优工艺探索
        3.3.2.1 絮凝剂种类的优化
        3.3.2.2 絮凝工艺响应面试验
    3.4 本章小结
第四章 臭氧氧化催化剂的选择及过程优化
    4.1 实验材料与仪器
        4.1.1 实验原料
        4.1.2 实验试剂与仪器
    4.2 实验分析及方法
        4.2.1 实验方法
        4.2.1.1 催化氧化实验
        4.2.1.2 负载型催化剂的制备
        4.2.2 分析方法
        4.2.2.1 常规指标测定
        4.2.2.2 臭氧浓度分析
        4.2.2.3 CODCR的测定
        4.2.2.4 色度测定
    4.3 结果与讨论
        4.3.1 臭氧氧化催化剂的选择
        4.3.2 负载型催化剂的回用研究
        4.3.3 催化剂用量对臭氧氧化的影响
        4.3.4 臭氧用量对臭氧氧化的影响
        4.3.5 反应温度对臭氧氧化的影响
        4.3.6 反应时间对臭氧氧化的影响
    4.4 本章小结
第五章 化学氧化后废水的膜处理连续试验研究
    5.1 实验原料及方法
        5.1.1 实验原料及试剂
        5.1.2 实验仪器
        5.1.3 中试仪器
    5.2 实验方法
        5.2.1 无机膜的制备
        5.2.2 pH值的测定
        5.2.3 TDS的测定
        5.2.4 电导率的测定
        5.2.5 化学需氧量COD的测定
        5.2.6 色度的测定
        5.2.7 硫酸盐含量的测定
        5.2.8 氯化物含量的测定
        5.2.9 总铁含量测定
    5.3 实验结果与分析
        5.3.1 膜系统处理过程各项指标去除情况
        5.3.2 膜系统运行的稳定性测试
        5.3.3 不同孔径的膜处理对废水的影响
        5.3.4 无机膜和反渗透膜对废水的影响
        5.3.5 臭氧氧化/复合膜处理对废水的影响
    5.4 本章小结
结论
参考文献
攻读博士学位期间取得的研究成果
致谢
附件

(6)我国水足迹量化模型构建与应用研究(论文提纲范文)

中文摘要
ABSTRACT
符号说明
第一章 绪论
    1.1 研究背景
    1.2 研究现状
    1.3 研究目的与意义
    1.4 研究内容与技术路线
    1.5 论文框架及主要章节说明
第二章 基于生命周期的水足迹影响评价理论
    2.1 生命周期评价概述
        2.1.1 生命周期评价的定义
        2.1.2 生命周期评价的方法
        2.1.3 生命周期评价的应用
    2.2 水足迹评价概述
        2.2.1 水足迹评价的定义
        2.2.2 水足迹评价的方法
        2.2.3 水足迹评价的应用
    2.3 本章小结
第三章 本土化全过程水足迹影响评价模型构建
    3.1 全过程水足迹影响评价的边界与框架
    3.2 清单构建
        3.2.1 微观层次清单构建方法
        3.2.2 中观层次清单构建方法
        3.2.3 宏观层次清单构建方法
    3.3 中间点特征化参数计算
        3.3.1 水稀缺参数
        3.3.2 毒性参数
        3.3.3 水体富营养化和酸性化参数
    3.4 人体健康和生态系统质量损伤评价
    3.5 误差控制
        3.5.1 不确定性分析
        3.5.2 敏感性分析
第四章 微观层次应用示例:某造纸企业水足迹研究
    4.1 企业简介
    4.2 目标和范围定义
    4.3 清单构建
        4.3.1 秸秆收集
        4.3.2 秸秆制浆
        4.3.3 秸秆浆造纸
        4.3.4 废弃物产生与处置
        4.3.5 供应系统
        4.3.6 某造纸企业水足迹影响评价清单
    4.4 水足迹环境影响评价结果
    4.5 关键因子识别
        4.5.1 关键过程
        4.5.2 关键物质
    4.6 输入因子敏感性分析
        4.6.1 关键因子敏感性
        4.6.2 木浆输入敏感性
        4.6.3 废水回用敏感性
        4.6.4 废水处理工艺敏感性
        4.6.5 能源敏感性
    4.7 本章小结
第五章 中观层次应用示例: 我国煤炭发电行业水足迹研究
    5.1 行业简介
    5.2 目标和范围定义
    5.3 清单构建
    5.4 水足迹环境影响评价结果
    5.5 关键因子识别
        5.5.1 关键过程
        5.5.2 关键物质
    5.6 输入因子敏感性分析
        5.6.1 关键因子敏感性
        5.6.2 运输敏感性
        5.6.3 时间敏感性
        5.6.4 煤炭输入敏感性
    5.7 本章小结
第六章 宏观层次应用示例: 我国工业废水排放水足迹研究
    6.1 我国工业废水排放情况简介
    6.2 目标和范围定义
    6.3 清单构建
    6.4 水足迹环境影响评价结果
    6.5 关键因子识别
    6.6 输入因子敏感性分析
        6.6.1 关键因子敏感性
        6.6.2 时间敏感性
        6.6.3 空间敏感性
    6.7 本章小结
第七章 结论与展望
    7.1 主要研究结论
    7.2 创新点
    7.3 展望
参考文献
致谢
攻读学位期间发表的学术论文目录
学位论文评阅及答辩情况表

(7)基于平板陶瓷超滤膜的多工艺耦合深度处理电镀废水(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景
    1.2 电镀废水的性质
        1.2.1 电镀废水的来源
        1.2.2 电镀废水的分类
        1.2.3 电镀废水的危害
        1.2.4 电镀废水的排放标准
        1.2.5 电镀废水的回用标准
    1.3 电镀废水研究现状
        1.3.1 电镀废水治理现状
        1.3.2 电镀废水深度处理技术研究现状
    1.4 陶瓷膜在废水处理中的应用
        1.4.1 陶瓷膜的特性
        1.4.2 陶瓷膜在废水处理中的应用现状
    1.5 研究目的、意义、研究内容和技术路线图
        1.5.1 研究目的、意义
        1.5.2 研究内容
        1.5.3 技术路线图
第二章 试验材料与方法
    2.1 试验材料与仪器
        2.1.1 主体试验材料
        2.1.2 水质分析试验试剂
        2.1.3 试验仪器
    2.2 试验方法
        2.2.1 陶瓷膜过滤试验方法
        2.2.2 混凝试验方法
        2.2.3 臭氧氧化试验方法
        2.2.4 Fenton氧化试验方法
        2.2.5 吸附试验方法
    2.3 水质分析方法
        2.3.1 常规指标分析方法
        2.3.2 紫外可见吸收光谱分析方法
        2.3.3 三维荧光光谱分析方法
        2.3.4 傅里叶红外光谱分析方法
第三章 试验用水水质分析
    3.1 试验用水来源
    3.2 常规水质指标测定与分析
    3.3 电镀废水水质分析
        3.3.1 紫外可见吸收光谱扫描分析
        3.3.2 三维荧光光谱扫描分析
        3.3.3 傅里叶红外光谱扫描分析
    3.4 本章小结
第四章 陶瓷膜过滤工艺深度处理电镀废水
    4.1 陶瓷膜的基本性能
        4.1.1 陶瓷膜的清水通量
        4.1.2 陶瓷膜的固有阻力
        4.1.3 陶瓷膜的亲疏水性
    4.2 陶瓷膜过滤处理效能分析
        4.2.1 陶瓷膜过滤对有机污染物的去除效果
        4.2.2 陶瓷膜过滤对浊度的去除效果
    4.3 陶瓷膜过滤运行效能分析
        4.3.1 陶瓷膜的临界通量
        4.3.2 不同初始通量下膜通量及压力变化
        4.3.3 陶瓷膜污染行为分析
        4.3.4 陶瓷膜清洗效果分析
    4.4 本章小结
第五章 预处理工艺深度处理电镀废水
    5.1 强化混凝处理效能分析
        5.1.1 优化强化混凝工艺参数
        5.1.2 强化混凝对特征有机物的去除效果
    5.2 臭氧氧化处理效能分析
        5.2.1 优化臭氧氧化工艺参数
        5.2.2 臭氧氧化对特征有机物的去除效果
    5.3 Fenton氧化处理效能分析
        5.3.1 优化Fenton氧化工艺参数
        5.3.2 Fenton氧化对特征有机物的去除效果
    5.4 高效吸附处理效能分析
        5.4.1 优化高效吸附工艺参数
        5.4.2 高效吸附对特征有机物的去除效果
    5.5 预处理组合工艺筛选
    5.6 本章小结
第六章 陶瓷膜耦合工艺深度处理电镀废水
    6.1 陶瓷膜耦合工艺系统的构建
    6.2 优化陶瓷膜耦合工艺运行参数
        6.2.1 活性炭投加量
        6.2.2 陶瓷膜的临界通量
        6.2.3 换炭量
    6.3 陶瓷膜耦合工艺处理效能分析
        6.3.1 陶瓷膜耦合工艺对有机物的去除效果
        6.3.2 陶瓷膜耦合工艺对浊度的去除效果
    6.4 陶瓷膜耦合工艺中膜污染行为与膜清洗效果分析
        6.4.1 陶瓷膜耦合工艺中膜污染阻力分析
        6.4.2 陶瓷膜耦合工艺中膜污染模型拟合分析
        6.4.3 陶瓷膜耦合工艺中膜清洗效果分析
    6.5 本章小结
第七章 结论与建议
    7.1 结论
    7.2 建议
参考文献
致谢
附录

(8)化工厂雨排废水处理及回用研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 我国水资源现状
    1.2 污水回用的现状
    1.3 化工污水特点
        1.3.1 石油化工污水
        1.3.2 煤化工污水
        1.3.3 其他化工污水
    1.4 化工污水处理技术
        1.4.1 物理处理法
        1.4.2 化学处理法
        1.4.3 物理化学处理法
        1.4.4 生物处理法
第二章 研究背景、内容及意义
    2.1 兰州石化概况
    2.2 研究背景及目的
    2.3 研究内容及意义
第三章 化肥厂雨排废水处理及回用研究
    3.1 化肥厂雨排废水改造前状况
    3.2 化肥厂雨排废水处理系统改造目标及原则
        3.2.1 改造目标
        3.2.2 改造原则
    3.3 化肥厂雨排废水处理回用研究
        3.3.1 化肥厂雨排废水处理回用工艺单元背景概况
        3.3.2 化肥厂雨排废水处理回用工艺技术方案
        3.3.3 化肥厂雨排废水处理回用工艺原理
        3.3.4 化肥厂雨排废水处理回用工艺简介
        3.3.5 化肥厂雨排废水处理详细工艺流程
    3.4 化肥厂雨排废水处理设备设施
        3.4.1 化肥厂雨排废水处理装置设备设施明细
        3.4.2 化肥厂雨排废水处理设备设施布置
    3.5 化肥厂雨排废水处理回用项目经济效益
        3.5.1 化肥厂雨排废水处理装置成本估算
        3.5.2 化肥厂雨排废水处理装置经济效益
    3.6 本章小结
第四章 雨排运行数据及废水处理效果分析
    4.1 装置主要工艺指标
        4.1.1 雨排废水进水及出水指标
        4.1.2 雨排系统各段中控馏出口指标
        4.1.3 药剂及能耗指标
    4.2 废水pH数据分析
    4.3 废水COD数据分析
    4.4 废水悬浮物数据分析
    4.5 污水氨氮数据分析
    4.6 环保药剂数据分析
        4.6.1 液体聚合氯化铝物耗分析
        4.6.2 聚丙烯酰胺物耗分析
        4.6.3 环保药剂降物耗工艺优化
        4.6.4 葡萄糖物耗分析
    4.7 装置能耗数据分析
        4.7.1 装置电耗分析
        4.7.2 装置综合能耗分析
    4.8 本章小结
第五章 结论
参考文献
致谢

(9)臭氧牡蛎壳生物固定床-MBR处理城镇污水厂尾水用于火电厂及优化用水的研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 选题背景
    1.2 臭氧氧化处理废水研究进展
        1.2.1 臭氧氧化原理
        1.2.2 臭氧氧化废水深度处理研究与应用现状
    1.3 生物固定床废水处理研究进展
        1.3.1 生物固定床原理及应用
        1.3.2 生物固定床填料
        1.3.3 生物固定床废水处理研究与应用现状
    1.4 MBR处理废水研究进展
        1.4.1 MBR原理及应用
        1.4.2 MBR废水处理研究与应用现状
    1.5 城镇污水处理厂尾水回用火电厂的研究与应用现状
        1.5.1 火电厂工业用水现状与水质要求
        1.5.2 单一尾水深度处理技术的研究与应用现状
        1.5.3 城镇污水厂尾水深度处理联合工艺的研究与应用现状
    1.6 火电厂用水存在的问题及解决策略
        1.6.1 城镇污水厂尾水深度处理用于火电厂存在的主要问题及解决策略
        1.6.2 火电厂用水存在的主要问题及解决策略
    1.7 研究目的及主要内容
        1.7.1 研究目的
        1.7.2 任务来源
        1.7.3 主要研究内容
        1.7.4 技术路线
第二章 臭氧-牡蛎壳生物固定床-MBR深度处理城镇污水厂尾水的工艺研究
    2.1 引言
    2.2 材料与方法
        2.2.1 供试尾水及水质
        2.2.2 试剂与材料
        2.2.3 实验装置
        2.2.4 实验方法
        2.2.5 指标及测定方法
        2.2.6 数据处理方法
    2.3 结果与讨论
        2.3.1 OOFBR-MBR工艺启动运行
        2.3.2 OOFBR-MBR运行的主要影响因素
        2.3.3 OOFBR-MBR工艺运行的适宜条件及处理效果
        2.3.4 OOFBR-MBR联合工艺的控制步骤与参数调控策略
    2.4 本章小结
第三章 臭氧-牡蛎壳生物固定床-MBR深度处理污水厂尾水的工艺机理
    3.1 引言
    3.2 材料和方法
        3.2.1 供试尾水及水质
        3.2.2 试剂与材料
        3.2.3 实验装置
        3.2.4 实验方法
        3.2.5 测定方法
    3.3 结果与讨论
        3.3.1 OOFBR-MBR处理污水厂尾水中难降解有机物的转化
        3.3.2 OOFBR-MBR处理污水厂尾水中氮素转化
        3.3.3 OOFBR-MBR处理污水厂尾水中磷去除
        3.3.4 OOFBR-MBR内微生物群落结构特征
        3.3.5 OOFBR-MBR微生态的优化调控策略
        3.3.6 OOFBR-MBR的工艺机理
    3.4 本章小结
第四章 火电厂优化用水策略与技术措施研究
    4.1 引言
    4.2 火电厂用水要求
        4.2.1 城镇污水厂尾水作为火电厂水源要求
        4.2.2 火电厂各用水工段的概况及水质要求
        4.2.3 火电厂废水零排放要求
    4.3 火电厂水平衡模型建立
        4.3.1 依据与方法
        4.3.2 模型构建方法与指标
    4.4 基于水平衡模型的电厂各用水工段水平衡与评价
        4.4.1 各用水工段的水平衡
        4.4.2 水平衡模型分析
    4.5 火电厂用、排水质的评价
        4.5.1 锅炉补给水系统废水水质评价
        4.5.2 生活污水系统水质评价
        4.5.3 含油废水水质评价
        4.5.4 含煤废水水质评价
        4.5.5 脱硫废水水质评价
        4.5.6 机组排水槽排水水质评价
        4.5.7 凝汽器坑排水水质评价
    4.6 火电厂优化工业用水策略
        4.6.1 火电厂优化用水模型
        4.6.2 火电厂优化用水方法
        4.6.3 火电厂优化用水措施
    4.7 本章小结
第五章 火电厂优化用水技术方案及评价
    5.1 概况
    5.2 尾水深度处理回用方案
        5.2.1 OOFBR-MBR深度处理工艺装置
        5.2.2 反渗透处理装置
        5.2.3 离子交换处理
    5.3 优化用水方案
        5.3.1 全厂取水、耗水和排水分析
        5.3.2 全厂废水排放水量及水质
        5.3.3 优化用水技术方案
    5.4 优化用水技术经济性评价
        5.4.1 尾水回用经济性评价
        5.4.2 分质用水技术与经济性评价
    5.5 本章小结
结论与展望
    1 结论
    2 创新点
    3 展望
参考文献
攻读博士学位期间取得的研究成果
致谢
附件

(10)基于污泥陶粒的曝气生物滤池处理喷水织造废水的应用研究(论文提纲范文)

致谢
摘要
Abstract
第一章 绪论
    1.1 引言
    1.2 喷水织造废水概况
        1.2.1 喷水织造废水的来源
        1.2.2 喷水织造废水的危害
        1.2.3 喷水织造废水处理技术
    1.3 曝气生物滤池工艺的研究进展
        1.3.1 曝气生物滤池工艺原理
        1.3.2 曝气生物滤池主要形式及特征
        1.3.3 曝气生物滤池在废水处理中的应用
    1.4 污泥基陶粒滤料的研究进展
        1.4.1 污泥的危害及处置
        1.4.2 污泥陶粒的水处理现状
    1.5 研究目标及内容
        1.5.1 研究目标
        1.5.2 研究内容
第二章 喷水织机中水回用站现状调研
    2.1 引言
    2.2 实验材料与方法
        2.2.1 实验材料
        2.2.2 实验方法
    2.3 结果与讨论
        2.3.1 喷水织造产业现状
        2.3.2 典型喷水织机中水回用站概况
        2.3.3 中水回用站Ⅰ废水处理效果评价
        2.3.4 中水回用站Ⅰ污泥性质分析
        2.3.5 喷水织机中水回用站废水处置及污泥资源化研究
    2.4 本章小结
第三章 污泥基陶粒的研发及性能测试分析
    3.1 引言
    3.2 实验材料与方法
        3.2.1 实验材料
        3.2.2 实验方法
    3.3 结果与讨论
        3.3.1 污泥陶粒的制备技术研究
        3.3.2 污泥陶粒的性能测试
    3.4 本章小结
第四章 污泥陶粒BAF系统处理喷水织造废水的性能研究
    4.1 引言
    4.2 实验材料与方法
        4.2.1 实验材料
        4.2.2 实验装置
        4.2.3 实验及分析方法
    4.3 结果与讨论
        4.3.1 BAF系统启动期间污染物去除特性
        4.3.2 气水比对BAF系统处理喷水织造废水效果的影响
        4.3.3 水力停留时间对BAF系统处理喷水织造废水效果的影响
        4.3.4 滤料高度对BAF系统处理喷水织造废水效果的影响
        4.3.5 BAF系统的反冲洗研究
    4.4 本章小结
第五章 污泥陶粒BAF系统处理喷水织造废水的机理探究
    5.1 引言
    5.2 材料与方法
        5.2.1 实验材料
        5.2.2 实验方法
    5.3 结果与讨论
        5.3.1 污染物去除特性
        5.3.2 微生物学特性
        5.3.3 滤料水处理特性
        5.3.4 污泥陶粒BAF稳定运行及污染物去除的机理初探
    5.4 本章小结
第六章 污泥处置及废水治理的工程应用
    6.1 引言
    6.2 污泥资源化处置工程
        6.2.1 工程概况
        6.2.2 工程设计
        6.2.3 技术经济分析
    6.3 喷水织造废水污染减排工程
        6.3.1 工程概况
        6.3.2 工程设计
        6.3.3 滤池结构设计
    6.4 本章小结
第七章 结论与展望
    7.1 结论
    7.2 展望
参考文献
个人简历

四、机械工业废水的处理及回用(论文参考文献)

  • [1]某燃煤电厂水网络优化及末端废水回用工艺可行性研究[D]. 包宇航. 东北电力大学, 2021(11)
  • [2]汽车制造行业废水处理关键技术研究与实践[D]. 程峥. 南昌大学, 2020(02)
  • [3]煤化工废水零液排放技术研究及高浓酚氨废水处理流程开发[D]. 陈博坤. 华南理工大学, 2020
  • [4]铅锌冶炼高盐废水零排放系统设计改造及应用研究[D]. 侯郊. 昆明理工大学, 2020(05)
  • [5]废纸制浆造纸厂废水处理新工艺及中试研究[D]. 焦东. 华南理工大学, 2020(05)
  • [6]我国水足迹量化模型构建与应用研究[D]. 马逍天. 山东大学, 2020(10)
  • [7]基于平板陶瓷超滤膜的多工艺耦合深度处理电镀废水[D]. 韩琦. 济南大学, 2020(01)
  • [8]化工厂雨排废水处理及回用研究[D]. 李静. 兰州大学, 2020(01)
  • [9]臭氧牡蛎壳生物固定床-MBR处理城镇污水厂尾水用于火电厂及优化用水的研究[D]. 刘世念. 华南理工大学, 2020(01)
  • [10]基于污泥陶粒的曝气生物滤池处理喷水织造废水的应用研究[D]. 章静. 浙江大学, 2020(02)

标签:;  ;  ;  ;  ;  

机械工业废水的处理与回用
下载Doc文档

猜你喜欢